The Complete Analysis of a Polynomial Factorization Algorithm over Nite Elds the Complete Analysis of a Polynomial Factorization Algorithm over Nite Elds the Complete Analysis of a Polynomial Factorization Algorithm over Finite Fields

نویسندگان

  • Philippe Flajolet
  • Xavier Gourdon
  • Daniel Panario
  • DANIEL PANARIO
چکیده

A uniied treatment of parameters relevant to factoring polynomials over nite elds is given. The framework is based on generating functions for describing parameters of interest and on singularity analysis for extracting asymptotic values. An outcome is a complete analysis of the standard polynomial factorization chain that is based on elimination of repeated factors, distinct degree factorization, and equal degree separation. Several basic statistics on polynomials over nite elds are obtained in the course of the analysis. L'analyse compl ete d'un algorithme de factorisation de polyn^ omes sur les corps nis R esum e : Cet article propose un cadre unii e pour l'analyse des param etres qui intervien-nent dans la factorisation de polyn^ omes sur un corps ni. L' etude repose d'une part sur les s eries g en eratrices utilis ees pour d ecrire les principaux param etres, d'autre part sur l'analyse de singularit e qui fournit les informations asymptotiques correspondantes. Est ainsi obtenue une analyse compl ete d'une cha^ ne classique de factorisation fond ee sur l' elimination des fac-teurs r ep et es, la factorisation en degr e disticts, et la s eparation des degr es egaux. Plusieurs statistiques de base relatives aux polyn^ omes sur les corps nis r esultent de cette analyse. Abstract. A uniied treatment of parameters relevant to factoring polynomials over nite elds is given. The framework is based on generating functions for describing parameters of interest and on singularity analysis for extracting asymptotic values. An outcome is a complete analysis of the standard polynomial factorization chain that is based on elimination of repeated factors, distinct degree factorization, and equal degree separation. Several basic statistics on polynomials over nite elds are obtained in the course of the analysis. 1. Introduction Factoring polynomials over nite elds intervenes in many areas like polynomial factorization over the integers 8, 31], cryptography 7, 33, 36], number theory 3], or coding theory 2]. The implications include nding complete partial fraction decompositions (a problem itself useful for symbolic integration), designing cyclic redundancy codes, computing the number of points on elliptic curves, and building arithmetic public key cryptosystems. In particular, the factorization of random polynomials over nite elds is needed in the index calculus method for computing discrete logarithms over nite elds 36]. This paper derives basic probabilistic properties of random polynomials over nite elds that are of interest in the study of polynomial factorization algorithms. We show that …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Polynomials andPolynomial

We give a precise average-case analysis of a complete polynomial factorization chain over nite elds by methods based on generating functions and singularity analysis. Polyn^ omes al eatoires et factorisation de polyn^ omes R esum e Nous donnons une analyse en moyenne pr ecise d'une cha^ ne compl ete de factorisation de polyn^ omes sur les corps nis par des m ethodes fond ees sur les fonctions g...

متن کامل

Factoring Polynomials over Finite Fields: Asymptotic Complexity vs. Reality

Several algorithms for factoring polynomials over nite elds are compared from the point of view of asymptotic complexity, and from a more realistic point of view: how well actual implementations perform on \moderately" sized inputs.

متن کامل

Factoring polynomials over p-adic elds

We give an eecient algorithm for factoring polynomials over nite algebraic extensions of the p-adic numbers. This algorithm uses ideas of Chistov's random polynomial-time algorithm, and is suitable for practical implementation.

متن کامل

Comparative Implementations of Berlekamp's and Niederreiter's Polynomial Factorization Algorithms

New C ++-implementations of the classical factorization algorithms for polyno-mials over nite elds of Berlekamp and the new ones of Niederreiter are presented. Their performances on various types of inputs are compared.

متن کامل

Factoring Polynomials over Special Finite Fields

We exhibit a deterministic algorithm for factoring polynomials in one variable over "nite "elds. It is e$cient only if a positive integer k is known for which ' k (p) is built up from small prime factors; here ' k denotes the kth cyclotomic polynomial, and p is the characteristic of the "eld. In the case k"1, when ' k (p)"p!1, such an algorithm was known, and its analysis required the generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998